• info@cancerinformation.com.hk
  • 2121 1328
  • facebook


文章 | 醫療新知 | 醫療新知
頁數 [1] 2 3 4 5


HER2 型乳癌是什麼?               在本港,約 20%乳癌個案是「較惡」的 HER2 型乳癌。HER2 (第二型人類表皮生長因子受體)自然地存在於乳房細胞內,是一種附在細胞表面的受體。正常細胞會製造少量的 HER2 受體,用作接收生長因子,將生長訊息由細胞外傳送至細胞內,以控制細胞生長。   當乳腺細胞有過量 HER2 受體,令細胞不受控制地增生,最終演化成腫瘤,這就是 HER2 型 (又稱 HER2 過度表現或 HER2 陽性) 乳癌。與其他種類的乳癌相比,HER2 型乳癌腫瘤的生長及擴散速度比較快,在有對抗 HER2 的標靶藥物治療之前,患者的存活期一般較短。   HER2 型乳癌患者可接受針對 HER2 受體的標靶藥物治療。抗 HER2 標靶藥物分為口服、靜脈注射和皮下注射三大類,可從癌細胞表面或進入癌細胞內,截斷 HER2 受體的生長訊息傳遞,從而抑制癌細胞的生長。目前已有數種針對 HER2 型乳癌的標靶藥物,醫生會根據患者的不同情況,去選擇最合適的標靶藥物組合。         如有興趣了解更多關於乳癌的資訊, 請參閱:http://her2morrow.com.hk         安全報告免責聲明 此平台並不旨在用於記錄或報告不良藥物事件資訊,如您懷疑有任何副作用,請向您的醫生或藥劑師諮詢和報告。 以上健康教育資訊由羅氏大藥廠香港有限公司提供 (NPM-HK-0074-11-2017)

新一代抗CD20抗體藥物助濾泡性淋巴癌復發患者延長壽命     淋巴癌(Lymphoma), 是血液系統的惡性疾病之一, 可分為何傑金氏淋巴癌 (Hodgkin’s lymphoma) 和非何傑金氏淋巴癌(non-Hodgkin’s lymphoma), 後者可根據其生長及擴散的速度再分為慢性和急性兩大類1。 濾泡性淋巴癌是最常見的慢性淋巴癌, 好發於年齡約50多歲的患者,最常見的症狀為頸部,腹股溝或腋下淋巴結腫脹。   隨著醫學的進步發展,醫學界在濾泡性淋巴癌的治療上已取得不俗的成績。 現時的治療方法主要有三種,分別是放射治療,化學治療以及較新的標靶治療3。標靶藥物利妥昔單抗(rituximab), 透過與B淋巴細胞表面抗原CD20結合,引起免疫反應,令癌細胞凋亡2。 在化療配合利妥昔單抗的治療下,濾泡性淋巴癌的存活期有了明顯的提高,很多病人可存活長達15年, 甚至更久。   濾泡性淋巴癌大多無法治癒,即使它對治療的反應良好,仍然會不間斷地復發,使得患者需要在他們的一生中多次接受治療。根據個人病情,復發後的患者可選擇單用利妥昔單抗或與化學治療/放射治療並用。隨著新藥物的不斷問世, 患者尚有不少新葯可以嘗試, 其中包括新一代抗CD20抗體藥物阿托珠單抗(obinutuzumab)4。 阿托珠單抗是在利妥昔單抗的基礎上,通過分子工程對抗體進行改造和修飾,從而增強抗體與免疫細胞的親和力,加強殺滅癌細胞的能力,令治療效果得到進一步提升5。 研究證實,用於接受利妥昔單抗治療後無效或病情出現惡化的濾泡性淋巴癌患者,阿托珠單抗配合抗癌藥苯達莫司汀 (bendamustine)作治療,及後再單用阿托珠單抗作持續治療有助延長患者的存活期, 降低病情惡化風險,這種合併療法的療效較單一使用苯達莫司汀的理想6。       安全報告免責聲明   此平台並不旨在用於記錄或報告不良藥物事件資訊,如您懷疑有任何副作用,請向您的醫生或藥劑師諮詢和報告。   以上健康教育資訊由羅氏大藥廠香港有限公司提供 (NPM-HK-0079-01-2018)   Valid until 29/11/2019 or until change is required in accordance with the regulatory requirements, whichever comes first.       References: 1. Adult Non-Hodgkin Lymphoma Treatment (PDQ®). Patient Version. Available at: https://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0032605/.   2. Johnson P and Glennie M. The mechanism of action of rituximab in the elimination of tumor cells. Semin Oncol 2003;20(1 Suppl 2):3-8.   3. Adult Non-Hodgkin Lymphoma Treatment (PDQ®). Health Professional Version. Available at: https://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0032836   4. Gazyva (obinutuzumab) [Hong Kong Product Information]. Hong Kong. Roche; July 2016   5. Mössner E, Brünker P, Moser S, et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood. 2010 Jun 3;115(22):4393-402.   6. Sehn LH, Chua N, Mayer J, et al. Obinutuzumab plus bendamustine versus bendamustine monotherapy in patients with rituximab-refractory indolent non-Hodgkin lymphoma (GADOLIN): a randomised, controlled, open-label, multicentre, phase 3 trial. Lancet Oncol. 2016 Aug;17(8):1081-1093.  
明報

【了解乳癌】乳癌復發擴散 新殺手鐧再抗戰         【明報專訊】對付癌症,醫生法寶盡出:手術、化療、電療、標靶治療,務求殺滅癌細胞;但當癌症復發、擴散,用上第二、三、四線化療效果不顯注,標靶治療出現抗藥性……醫生就要宣布投降?   當癌細胞步步進逼,醫生還有什麼殺手鐧?       新趨勢:荷爾蒙合併抑制劑治療減副作用   ■個案 遇上高毒性腫瘤     現年40歲的張女士,和丈夫育有3個小孩,生活本是十分滿足快樂。4年前的聖誕,她發現左邊乳房出現了一硬塊,起初不為意,但硬塊生長得很快,數周內長到幾厘米大。乳腺外科醫生馬上安排穿刺化驗和乳腺造影檢查,報告很快就確定了張女士患上乳癌,直徑約5厘米。她選擇全乳腺切除術,術中發現腋下淋巴有癌細胞,故此腋下淋巴腺亦做了清除手術。   張女士的病理分析發現,腫瘤直徑達5.5厘米,腫瘤組織學屬於毒性較高的低分化類型(Grade 3),腋下淋巴群中有兩個受癌細胞侵入。腫瘤生物標記結果為荷爾蒙受體(ER+、PR+)陽性,HER2陰性,顯示癌細胞生長速度的「Ki-67細胞增殖因子指數」高達70%(普通乳癌中位數約15%)。   張女士的腫瘤分化度低,復發和擴散風險較高,因此,手術後張女士接受了8個周期(16星期)輔助化學治療和放射治療,亦開始了荷爾蒙治療。     術後兩年復發 擴散全身   完成化療和放射治療後,張女士按建議服用荷爾蒙藥,生活漸回正軌。可是兩年後,張女士持續咳嗽,運動後盆骨也持續疼痛。醫生馬上安排全身正電子掃描,不幸發現廣泛的腫瘤復發及擴散,影響多段脊骨、盆骨、肋骨、肺和肝臟。   張女士和家人都希望盡快開始治療。醫療團隊也認同應盡快開始系統性治療,但需要先再抽取腫瘤樣本化驗。研究顯示,腫瘤生物標記在乳癌復發時有大約40%會出現變化,當中有一半會影響治療用藥的決定。在張女士身上,團隊最擔心是腫瘤的荷爾蒙受體由陽性轉為陰性,如此的話荷爾蒙治療就不再適用。   團隊在分析影像後決定在盆骨抽取化驗。病理醫生在樣本進行免疫組織學化驗,確定腫瘤源頭來自乳癌,且荷爾蒙受體維持陽性。     文:林泰忠(香港大學臨牀腫瘤科臨牀助理教授) 圖:受訪者提供 編輯:王翠麗     文章來自: 明報 https://health.mingpao.com/?p=12034


香港01

【以毒攻毒】英國大學研究利用病毒 刺激免疫系統攻擊腦腫瘤細胞 撰文: 張子傑 發佈日期:2018-01-04 22:24 最後更新日期:2018-01-04 22:24             英國一隊醫學團隊研究治療腦癌的新方式——注入病毒,刺激人體免疫系統攻擊癌細胞。這個「以毒攻毒」的方法,初步已見成效,科研人員正計劃進行更大型臨床實驗。     腦腫瘤對於大眾來說,聽起來令人絕望,通常末期腦腫瘤患者只有數月的存活期,治療方面離不開手術和化療。最近英國有大學研究新療法,以病毒刺激免疫系統,再攻擊癌細胞,成效顯著。   這個研究由英國利茲大學(University of Leeds)腫瘤科專家負責,原理是將呼腸孤病毒(reovirus)以注射點滴方式進入血管,再接近癌細胞,刺激人體免疫系統抵抗癌細胞。   研究人員表示,腦腫瘤細胞和人體細胞相似,而且擅於欺騙免疫系統,因此難於偵測,反而病毒易於被免疫系統發現,可望成為消滅腫瘤的王牌。       傳統化療方式最大的難處,是腦部血腦屏障的特殊結構影響藥物作用的速度與效率,今次研究的最大突破是發現病毒不受這個天然限制影響,可以直接滲入腦部,大為提升治療成效。 研究人員找來9位即將接受腦腫瘤移除手術的病人參與,在手術前數天注入病毒,其後發現所有參加者的腦內均有病毒刺激免疫系統的跡象,連有「殺手」之稱的T細胞也有參與攻擊癌細胞,結果令人滿意。       報告指出,注射病毒只會引起像感冒徵狀的副作用,對於病人來說,影響可謂非常輕微。     研究結果刊登於《科學轉化醫學期刊》(Science Translational Medicine),團隊將會展開更大規模的臨床試驗,以改善和延長患者的生命為目標。         文章來自: 香港01 https://www.hk01.com/%E5%9C%8B%E9%9A%9B/146648
物聯網 - 智慧城市 / 3Dprint.com

Cellink以3D列印製造腫瘤以對抗癌症 陳智德 2018-01-24       Cellink希望能夠用實驗用腫瘤取代大量的動物測試。Cellink       瑞典生物科技公司Cellink設計出生物墨水(biological ink),可被各種不同3D列印機用於製造不同種類的細胞組織,目前正研究以3D列印製造腫瘤以對抗癌症。此將能看到實際上腫瘤如何生長,以及如何對不同治療做出反應。     Cellink的最新活動已引發3D列印界內外的極大興趣。該公司日前宣布,已與法國公司CTI Biotech簽署合作協議,製造可用於藥品檢測的腫瘤。透過將生物墨水與病患癌細胞混合的方式,在不危害人體健康下進行對腫瘤的深入研究。     目前Cellink生產生物列印的鼻子及耳朵,用於化妝品與醫學研究,並製造由人體器官細胞組成的立方體,讓研究人員對進行實驗。     製造新藥對抗癌症既是公眾的優先考慮,但因癌症細胞存活於病患體內,病患並非皆能接受試驗性地服用新藥對抗癌症,使得新藥發展緩慢,並可能會扼殺創新概念,或為他人的進展製造障礙,因此製造用於藥品檢測的腫瘤擁有深遠的意義。     Cellink盼未來能列印人體器官,儘管該公司承認可能還要再等15~20年。使用生物墨水製造的腫瘤進行測試,能讓研究人員擺脫許多道德問題,並降低此類研究活動的相關成本。     Cellink希望能夠用實驗用腫瘤取代大量的動物測試,不僅可開發處理癌症腫瘤的新方式,且能讓醫學研究人員對個人化的癌症治療方法展開研究,減少治療造成的副作用。     該公司創辦人Erik Gatenholm與Hector Martinez Avila也創造售價最低僅10,000美元的組織3D列印機,引發大量的需求。       Cellink Turns to 3D Printing Tumors to Combat Cancer by Hannah Rose Mendoza | Jan 9, 2018 | 3D Printing, Medical 3D Printing, Science & Technology |     It may seem counterintuitive, but the Swedish biotech company Cellink is actually fabricating tumors in an effort to combat cancer. The company, which exploded on the scene in 2016, has risen to fame as a result of their biological ink, designed to be used by a variety of 3D printers to create different types of cell tissues. The founders, Erik Gatenholm and Hector Martinez Avila, then went on to create a tissue printing 3D printer that sells for only $10k and the demand has been phenomenal.       The market for bioprinting is expected to triple between 2016 and 2021, to around $1,33 bn. [Image courtesy of Cellink]       The company has been in the news so often, it’s nearly exhausting trying to keep up, but their latest activity is one that has garnered great interest both in and outside of the 3D printing community. The company announced on Monday that they have signed a partnership with CTI Biotech, a French company based in Lyon, to fabricate tumors that can be used for pharmaceuticals testing. The ability to mix their own inks with cells from patients’ cancers will allow them to produce tumors that can be subjected to intense research without endangering human lives. As Gatenholm explained in an interview with Business Insider Nordic:     “You will be able to see how a tumor grows and how it would respond to different treatments. It’s a very relevant and a realistic model for research.”     Cellink sells both the 3D printers and the bio-ink. The printers are priced between $10,000 and $39,000. [Image courtesy of Cellink]       Currently, Cellink produces bioprinted noses and ears for cosmetics and medical research, as well as creating cubes comprised of cells that can allow researchers to experiment with human organ cells. Branching out into the production of tumors is less of a leap and more of an expansion, and the implications are profound. Developing new medicines to combat cancer is both a high priority for the public and something that can only necessarily proceed slowly as the cancer itself lives inside of a person, who cannot simply be subject to any and all ideas about what might combat the disease. This means that a slow, cautious approach can strangle some innovative ideas or simply create interminable roadblocks to the advancement of others.   The ability to use bioink to create tumors frees researchers of the many ethical concerns associated with testing as well as reduces the costs associated with such research activities. Currently, a great deal of the medical testing being undertaken to advance cancer treatments occurs on animals, something that Cellink hopes will be able to be replaced with these made-in-the-lab tumors. The driving idea is that not only will new methods of addressing cancerous tumors be able to be developed, but that also medical researchers can begin to explore personalized means of delivering cancer treatments, hopefully with fewer negative side effects.       Cellink’s founders Hector Martinez Avila (left) and Erik Gatenholm (right), with Cellink CCO Ariel Kramer at Nasdaq First North for the IPO. [Image courtesy of Business Insider Nordic]       This effort is part of Cellink’s mission to be a global leader in bioprinting and to change the face of medicine as we know it. In addition, they hope to one day be able to print human organs, although, Gatenholm admits, that possibility is still most likely 15 to 20 years in the future. Interest in their ideas has been strong and confidence in their company continues to grow, as demonstrated by the fact that only 10 months after the company was founded, there was a 1000% oversubscription to their IPO. During their first year, they have already reached profitability, something not common for tech startups.   What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.       文章來自: 物聯網 - 智慧城市 / 3Dprint.com 中: https://www.digitimes.com.tw/iot/article.asp?cat=158&id=0000522680_X9U7ROVH7DAP4D1R7EOV4 ENG : https://3dprint.com/199654/cellink-3d-printing-tumors/
大紀元 / ACS

中國傳統墨汁有抗癌功效       墨除了用于繪畫,還具有治療疾病的作用。圖為清代著名畫家鄭板橋的《墨竹圖》。(公有領域)       【大紀元2018年01月24日訊】(大紀元記者張秉開編譯報導)     中國傳統墨汁的藥效引起科學家的興趣。一項研究指出,墨汁具有抗癌功效,其機制與其所含納米顆粒有關。   據健康網站professorhealth 1月23日報導,人們都知道,在中國傳統文化中,黑黑的墨可用來表現極為優美的藝術,例如中國書法和水墨畫。     科學家也關注墨汁的藥用效果,並嘗試探討其藥理機制。     《美國化學會OMEGA刊》(ACS Omega)一篇報告說 .     墨汁對於癌症向淋巴結的擴散和轉移,具有非侵入性的治療作用,也就是說墨汁是一種不會給患者造成傷害的有效抗癌藥物。   癌細胞經常會從淋巴管向病灶外轉移。對此,西方醫學主要使用手術切除方法進行治療,但是副作用大,而且無法控制復發。   因此,近年來出現非侵入性光熱療法(PTT),來抗擊癌細胞轉移。該方法使用納米材料來殺死癌細胞,但是這些納米材料有毒、難以加工生產和價格昂貴。     科學家發現,中國墨汁具有類似光熱療法納米材料的作用,卻無毒且價格便宜,有用於治療癌症的潛力。中國墨汁的制備原理是煤煙、松煙與明膠等混合,也就是製成碳元素、水和膠的混合物。研究者選擇胡開文墨(Hu-Kaiwen ink),對此加以分析。胡開文墨汁創於清朝乾隆年間,距今已有近250年的生產歷史。     科學家發現,這種中國傳統工藝製作的黑色混合液體含有納米顆粒,其中碳原子形成薄層結構。胡開文墨汁在激光下加溫後,溫度可以升高至55攝氏度(131華氏度)。因此,這種墨汁經過光熱療法(PTT)所用的激光照射,能夠在實驗條件下殺死癌細胞,而且墨汁顆粒具有探測癌細胞的作用。科學家希望將墨汁用于開發抗癌新療法。     實際上,中國以墨汁為藥的歷史超過一千年。據宋朝開國皇帝指定修撰的藥典《開寶本草》記載,好墨可以入藥。按照中醫理論,墨的藥味「辛、平」,可歸入心、肝和腎三個臟器所屬的經絡,具有止血、消腫的功效,可用于孕婦产后血晕等疾患。#     責任編輯:林妍     Ancient ink for cancer treatment     Traditional Chinese ink is made of nanoparticles and thin layers of carbon that could help treat cancer. Credit: toonman/Shutterstock.com     “New Application of Old Material: Chinese Traditional Ink for Photothermal Therapy of Metastatic Lymph Nodes” ACS Omega     For hundreds of years, Chinese calligraphers have used a plant-based ink to create beautiful messages and art. Now, one group reports in ACS Omega that this ink could noninvasively and effectively treat cancer cells that spread, or metastasize, to lymph nodes.   As cancer cells leave a tumor, they frequently make their way to lymph nodes, which are part of the immune system. In this case, the main treatment option is surgery, but this can result in complications. Photothermal therapy (PTT) is an emerging noninvasive treatment option in which nanomaterials are injected and accumulate in cancer cells. A laser heats up the nanomaterials, and this heat kills the cells. Many of these nanomaterials are expensive, difficult-to-make and toxic. However, a traditional Chinese ink called Hu-Kaiwen ink (Hu-ink) has similar properties to the nanomaterials used in PTT. For example, they are the same color, and are both carbon-based and stable in water. So Wuli Yang and colleagues wanted to see if Hu-ink could be a good alternative material for PTT.   The researchers analyzed Hu-ink and found that it consists of nanoparticles and thin layers of carbon. When Hu-ink was heated with a laser, its temperature rose by 131 degrees Fahrenheit, much higher than current nanomaterials. Under PPT conditions, the Hu-ink killed cancer cells in a laboratory dish, but under normal conditions, the ink was non-toxic. This was also the scenario observed in mice with tumors. The researchers also noted that Hu-ink could act as a probe to locate tumors and metastases because it absorbs near-infrared light, which goes through skin.   The authors acknowledge funding from the National Natural Science Foundation of China and the Key Technologies R&D Program of China.   Note: ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies.     文章來自: 大紀元 / ACS 中 : http://www.epochtimes.com/b5/18/1/23/n10082070.htm ENG: https://www.acs.org/content/acs/en/pressroom/presspacs/2017/acs-presspac-september-27-2017/ancient-ink-for-cancer-treatment.html
大紀元 / Georgia Tech

抗癌新招 激光「燒斷」癌細胞偽足阻其轉移     電子掃瞄顯微鏡下拍攝到的癌細胞,長有大量的絲狀偽足,使它們能在人體內轉移。(NIH)     【大紀元2018年01月15日訊】(大紀元記者張妮編譯報導)癌症研究領域頂尖的一批科學家們正在研究一種利用納米「金棒」注入患處,並結合激光熱療的治癌方案,不僅能完成局部治療而不傷害健康細胞,還能有效阻斷癌細胞轉移。該研究已在老鼠體內、以及人體癌細胞實驗室培養皿試驗都獲成功,等待進一步臨床人體試驗。   很多癌症病人在接受治療後,都是被可惡的癌症轉移奪走了生命。因此科學家在研究,如果能找到有效的阻止癌細胞轉移的方式,就會極大地提高癌症的治癒率。   美國國家科學院院士Mostafa El-Sayed引領來自佐治亞理工學院(Gatech)、佐治亞州立大學的科學家們進行的,近期發佈在《美國國家科學院院刊》(PNAS)上的報告揭示了他們的成果進展。     治療原理   研究者們解釋說,如果把人體細胞放大來看,它們就像一個個由薄膜包裹著的充滿著液體的球體,裡面漂浮著細胞器。細胞內還有支撐細胞形態、提供各種功能的細胞骨架。而這些支架帶有許多稱為絲狀偽足的剛毛突起,從細胞壁上延伸出來,幫助正常細胞在它們所屬的人體器官上移動。   但在癌變的細胞上,這些部份通常處於過渡生長狀態,比如會長出大量的絲狀偽足。「這些板狀偽足和絲狀偽足給了癌細胞用於移動的『腿』,使它們能在人體內轉移。」研究者之一、生化分析系畢業生Yue Wu說。   該團隊研究的治療方案,就是向癌變患處注入納米「金棒」。所謂納米金棒,就是細到只有數十億分之一米的黃金材料,納米就是其體積極其微小的意思。這種納米材料分兩步來對付癌細胞。   第一步,將這些材料注入患處讓它們「裹住」癌細胞。這種材料表面附有RGD肽,使其更易與一種稱為整聯蛋白的細胞蛋白質結合。   「這些納米棒綁定整聯蛋白,阻斷它們的功能。這樣它們就無法引導細胞骨架不斷生長板狀和絲狀偽足。」另一位研究者、數據信息生物學博士後助理Yan Tang說。   這就減緩了癌細胞的繁殖速度,而且該過程不會影響正常的細胞。「(因為)某些特定的整聯蛋白只在癌細胞上大量存在,而正常細胞上並不多見。」該研究的主要作者之一Moustafa Ali說。     激光微熱治療 第二步,研究者們用近紅外光(NIR)照射患處,這一療程明顯地停止了癌細胞的轉移。   「細胞不會吸收這種光,但是納米黃金材料會吸收,吸收後會升溫,繼而熔化它們綁定的癌細胞,摧毀板狀和絲狀偽足。」Ali說,「在這次試驗中我們並沒有殺死癌細胞。因為那樣我們就看不到這個方法是否會阻止癌細胞的轉移了。如果需要,我們可以調整療程為殺死癌細胞的模式。」   前一個在動物體內進行的試驗中效果不大好,使用的溫度太高了,「導致發炎,這樣就只能進行一個療程了。」Ali說,「結果雖然大部份癌細胞被殺死了,但是還有少數活下來了,後期還會轉移。」   「而新採用的較溫和的療法不會傷害皮膚或機體組織,這樣就能進行多個療程,能更徹底地阻斷癌細胞遷移的能力。」研究員Ronghu Wu說。   研究者們預計該療法將來適用於頭、頸、乳腺和皮膚癌,能夠局部注入納米金材料,再加以激光低熱熱療,而不像化療讓整個機體都很受傷。   這樣低熱激光大約能擊中埋入組織中2至3厘米深的納米金材料,Ali說「最深能擊入4至5厘米的患處吧」。對於更深部位的腫瘤,「可能需要光纖或內鏡激光設備。」 El-Sayed說。   而將納米材料直接注入血液中目前來看還不可行。   該研究團隊之前在PNAS上發表了成功治療老鼠的研究論文。接受治療的老鼠在15個月後,沒有發現任何對納米金材料的毒性反應。「大部份去了肝臟和脾臟,但這些器官仍正常工作,老鼠一年多後仍健康存活。」   責任編輯:朱涵儒       Thwarting Metastasis by Breaking Cancer’s Legs with Gold Rods By Ben Brumfield | June 26, 2017 • Atlanta, GA       A dying cancer cell with filopodia stretched out to its right. The protrusions help cancer migrate. Stock NIH NCMIR image. The image does not display a cell treated in the Georgia Tech study. Credit: NIH-funded image of HeLa cell / National Center for Microscopy and Imaging Research / Thomas Deerinck / Mark Ellisman. Use may require permission.   “Your cancer has metastasized. I’m sorry,” is something no one wants to hear a doctor say.   Cancer cells kill most often by crawling away from their original tumors to later re-root in vital parts of the body in a process called metastasis. Now, a research team led by the Georgia Institute of Technology has developed a new treatment to thwart cancer's spread through the body by, in a sense, breaking cancer cells’ legs.   Cancer cells often cover themselves with bristly leg-like protrusions that enable them to creep. The researchers have used minuscule gold rods heated gently by a laser to mangle the protrusions, according to a new study. The treatment prevented cell migration, a key mechanism in metastasis, in experiments on common laboratory cultures (in vitro) of cancerous human cells.   The method could potentially, in the future, offer clinicians going after individual tumors a weapon to combat cancer’s deadly spread at the same time. The medical field is currently less than well-equipped to stop metastasis.   “If cancer stays in a tumor in one place, you can get to it, and it’s not so likely to kill the patient, but when it spreads around the body, that’s what really makes it deadly,” said lead researcher Mostafa El-Sayed, Julius Brown Chair and Regents Professor at Georgia Tech’s School of Chemistry and Biochemistry.   The treatment can also easily kill cancer cells, but in this experiment, it was vital to specifically show that it greatly slowed cell migration. The method is not scheduled for human testing.     Halting cancer softly   The experimental treatment also spared healthy cells, in these and in prior experiments, making the method potentially much less taxing on patients than commonly used chemotherapy. In past tests in animal models, the researchers have uncovered no toxic side effects from the gold used in the treatment, and have found no observable damage to healthy tissue from the low-energy laser.   And they did not see recurrence of the treated cancer.   “The method appears to be very effective as a locally administered treatment that also protects the body from cancer’s spread away from the treated tumors, and it is also very mild, so it can be applied many times over if needed,” El-Sayed said.   El-Sayed, co-lead author Ronghu Wu, and first authors Yue Wu and Moustafa Ali published the results of their current in vitro experiments, a new development in photothermal gold nanorod therapy, on June 26, 2017, in the Proceedings of the National Academy of Sciences. The research was funded by the National Science Foundation and the National Institutes of Health.     How it works: Icky legs   To understand how the treatment works, let’s take a close-up look at a cell and some things that happen to it in malignant cancer.   Many people think of cells as watery balloons — fluid encased in a membrane sheath with organelles floating around inside. But that picture is incomplete. Cells have support grids called cytoskeletons that give them form and that have functions.   The cytoskeletons also form bristly protrusions called filopodia, which extend out from a weave of fibers called lamellipodia that are on the cell’s fringes. The protrusions normally help healthy cells shift their location in the tissue that they are part of.   But in malignant cancer, normally healthy cell functions often lunge into destructive overdrive. Lamellipodia and filopodia are wildly overproduced.   “All these lamellipodia and filopodia give the cancer cells legs,” said Yue Wu, a graduate student in bioanalytical chemistry. “The metastasis requires those protrusions, so the cells can travel.”     How it works: Sticky rods   The gold nanorods thwart the protrusions in two ways. The rods are comprised of a small collection of gold atoms – nano refers to something being just billionths of meters (or feet) in size.   First, El-Sayed’s nanorods are introduced locally, where they encumber the leggy protrusions on cancerous cells. The rods are coated with molecules (RGD-peptides) that make them stick specifically to a type of cell protein called integrin.   “The targeted nanorods tied up the integrin and blocked its functions, so it could not keep guiding the cytoskeleton to overproduce lamellipodia and filopodia,” said Yan Tang, a postdoctoral assistant in computational biology who worked on the study. The binding of the integrin alone slowed down the migration of malignant cells.   But healthy cells were not targeted. “There are certain, specific integrins that are overproduced in cancerous cells,” said Moustafa Ali, one of the study’s first authors. “And you don’t find them so much in healthy cells.”     How it works: Gentle laser heating   In the second phase, researchers hit the gold nanoparticles with a low-energy laser of near-infrared (NIR) light. It brought the migration of the cancer cells to an observable halt.   “The light was not absorbed by the cells, but the gold nanorods absorbed it, and as a result, they heated up and partially melted cancer cells they are connected with, mangling lamellipodia and filopodia,” Ali said. “It didn’t kill all the cells, not in this experiment. If we killed them, we would not have been able to observe whether we stopped them from migrating or not.”   If desired, the treatment can also be adjusted to kill the cells.   Early experiments in animal models in vivo with hotter lasers didn’t work as well.  “That caused inflammation, which made it possible to heat one time only,” Ali said. “As a result, that high temperature would wipe out many cancer cells, but not all of them. Some hidden ones might have survived, and also still been able to migrate.”   “This gentle laser didn’t burn the skin or damage tissue, so it could be dosed multiple times and more thoroughly stop the cancer cells from being able to travel,” said researcher Ronghu Wu.     Medical possibilities   The researchers presently envision treating head, neck, breast, and skin cancers with direct, local nanorod injections combined with the low-power near-infrared laser, which can hit the gold nanorods 2-3 centimeters (a bit under or over an inch) deep inside tissue. “But it could go as deep as 4-5 centimeters,” Ali said.   Deeper tumors could conceivably be treated with deeper injections of nanorods. “Then you’d need to go in with a fiber optic or endoscopic laser,” El-Sayed said. Injecting the nanorods directly into the bloodstream as a broad treatment would not currently be a viable option.   El-Sayed’s group has previously published in vivo experiments in mice in the Proceedings of the National Academy of Sciences together with Emory University School of Medicine. That study showed no observable toxicity from the gold in mice 15 months after treatment.   “A lot of it ended up in the liver and spleen,” El-Sayed said. “But the functions of these organs appeared intact upon examination, and treated mice were alive and healthy over a year later.”     Presidential honors   Mostafa El-Sayed is one of the world’s most highly decorated and cited living chemists, and a pioneer of nanoscience and technology. Among his many recognitions are the President’s National Medal of Science, awarded by President George W. Bush, and the Priestley Medal, the American Chemical Society’s highest honor. President Barack H. Obama appointed El-Sayed to the President’s National Medal of Science Committee. El-Sayed also participated in the nomination of chemistry Nobel Laureate Ahmed Zewail.   El-Sayed is known throughout physical chemistry for “El-Sayed’s Rule,” which handles complexities of electron spin orbits, and which has found a lasting place in photochemistry textbooks. After losing his wife to cancer in 2005, El-Sayed dedicated his knowledge and research to ending the scourge.   Also read: Cancer and Technology   Also read: Punching Cancer with RNA Knuckles   The following authors also contributed to this research: Haopeng Xiao and Tiegang Han from Georgia Tech, and Kuangcai Chen and Ning Fang from Georgia State University. This research was funded by the National Science Foundation Division of Chemistry (grants 1608801, CAREER Award CHE-1454501), and the National Institutes of Health Nanotechnology Study Section (grant 1R01GM115763). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies.       文章來自:大紀元 / Georgia Tech 中 : http://www.epochtimes.com/b5/18/1/15/n10058064.htm Eng : http://www.news.gatech.edu/2017/06/26/thwarting-metastasis-breaking-cancers-legs-gold-rods        



治療乳癌的外科手術           手術是治療乳癌的關鍵元素,乳房切除的範圍取決於腫瘤的大小、性質和擴散程度。很多患者都只需切除腫瘤和部分乳房組織,然後再以放射治療照射未切除的乳房組織,無需接受大規模的乳房切除。所有乳房切除手術都會留下疤痕,疤痕是否明顯,需視乎醫生的技術。 研究顯示在乳癌早期確診的話,如果採用局部切除手術加上放射治療,治癒的機會率與全面切除乳房手術一樣。   外科手術主要分為以下四種,醫生會與妳商討哪一種外科手術最合適妳。 • 硬塊切除 • 環節切除 • 全乳切除 • 腋下淋巴腺切除   完成乳房切除手術後,只要注意日常生活細節,並按職業治療師指示做適量復康活動,有助預防及減輕手術後發生慢性淋巴水腫。     妳可以參閱「醫院管理局.智友站.乳癌.乳房切除手術後病人須知」 https://goo.gl/Yjc6L6     即使出院後,身體仍在痊癒階段,需要時間回復狀態。期間你需要的,是充足的睡眠和均衡營養的飲食,使你身體上和情緒上都感到有力量。而且,請緊記不要提重物。       如有興趣了解更多關於乳癌的資訊, 請參閱:http://her2morrow.com.hk/           安全報告免責聲明 此平台並不旨在用於記錄或報告不良藥物事件資訊,如您懷疑有任何副作用,請向您的醫生或藥劑師諮詢和報告。 以上健康教育資訊由羅氏大藥廠香港有限公司提供 (NPM-HK-0074-11-2017)    

chanleungcho
dr.chan
breasthk
immuno
免疫營養
Roche-Breast
藥物資助
講座活動
聯絡電話:
2121 1328
聯絡地址:
Flat B, 8/F., Mow Hing Industrial Building, No.205 Wai Yip Street,
Kwun Tong, Kowloon, Hong Kong
香港觀塘偉業街205號,
茂興工業大廈8樓B室

聯絡地址:
Flat B, 8/F., Mow Hing Industrial Building,
No.205 Wai Yip Street, Kwun Tong,
Kowloon, Hong Kong
香港觀塘偉業街205號,
茂興工業大廈8樓B室
聯絡電話:
2121 1328

聯絡電郵:
info@cancerinformation.com.hk

會員註冊 | 私隱政策 | 服務條款
版權所有 不得轉載 © Copyright 2013 Cancer - information Co. All rights reserved. Powered by BIC Online